Induksi Elektromagnetik

A. Gaya Gerak Listrik Induksi

Beda potensial yang disebabkan oleh perubahan jumlah garis gaya magnetik yang menembus kumparan dinamakan gaya gerak listrik induksi atau ggl induksi.

Ggl induksi timbul ketika magnet batang digerakkan masuk atau keluar kumparan. Ketika magnet batang digerakkan mendekati kumparan, jumlah garis gaya magnetik yang menembus kumparan bertambah. Sebaliknya, ketika magnet batang dijauhkan dari kumparan, jumlah garis gaya magnetik yang menembus kumparan akan berkurang. Jika magnet batang terus-menerus digerakkan masuk dan keluar kumparan, jumlah garis gaya magnetik yang menembus kumparan terus berubah. Perubahan jumlah garis gaya magnetik yang menembus kumparan menyebabkan beda potensial di ujung-ujung kumparan berbeda pula. Timbulnya beda potensial di ujungujung kumparan menyebabkan arus listrik mengalir di dalam kumparan. Arus listrik yang disebabkan oleh perubahan jumlah garis gaya magnetik yang memotong kumparan dinamakan arus induksi.

Besarnya gaya gerak listrik atau tegangan yang menimbulkan arus listrik pada percobaan Faraday sebanding dengan laju perubahan fluks magnetik yang melalui kumparan. Kesimpulan tersebut jika dituliskan secara matematis adalah sebagai berikut.

Jika jumlah lilitan dalam kumparan diperbanyak, jarum galvanometer akan menyimpang lebih jauh. Hal ini menunjukkan bahwa arus listrik induksi yang mengalir melalui kumparan meningkat dan ggl induksi bertambah besar.

Selain dengan memperbanyak jumlah lilitan, ggl induksi dapat bertambah lebih besar jika kecepatan magnet yang memasuki kumparan dipercepat. Jadi, besar kecilnya ggl induksi bergantung pada tiga faktor berikut.

  1. Banyaknya lilitan kumparan.
  2. Kecepatan gerak keluar-masuk magnet ke dalam kumparan.
  3. Kuat magnet batang yang digunakan.

Arus listrik dalam kumparan mengalir dalam dua arah, arus listrik seperti ini dinamakan arus listrik bolak-balik atau arus AC (Alternating Current). Sama halnya seperti arus listrik yang berubah-ubah, polaritas tegangan pada ujung-ujung kumparan pun ikut berubah-ubah. Tegangan yang polaritasnya selalu berubah-ubah dinamakan tegangan listrik bolak-balik.

B. Generator

Alat-alat elektronika, seperti televisi, setrika, radio, lemari es, dan lampu memerlukan energi listrik dapat bekerja. Listrik dihasilkan oleh mesin pembangkit listrik yang dinamakan generator atau dinamo. Generator adalah mesin yang mengubah energi kinetik atau energi gerak menjadi energi listrik.

Generator menghasilkan arus listrik induksi dengan cara memutar kumparan di antara celah kutub utara-selatan sebuah magnet. Jika kumparan diputar, jumlah garis gaya magnetik yang menembus kumparan akan berubah-ubah sesuai dengan posisi kumparan terhadap magnet. Perubahan jumlah garis gaya magnetik inilah yang menyebabkan timbulnya ggl induksi di ujung-ujung kumparan sehingga menghasilkan energi listrik.

Ada dua jenis generator, yaitu generator arus bolak-balik yang disebut juga alternator dan generator arus searah. Perbedaan generator arus bolak-balik dengan generator arus searah hanyalah pada bentuk cincin yang berhubungan dengan kedua ujung kumparan. Pada generator arus bolak-balik terdapat dua buah cincin, dengan tiap cincin berhubungan dengan tiap ujung kumparan. Pada generator arus searah hanya terdapat sebuah cincin yang terbelah di tengahnya yang dinamakan cincin belah atau komutator. Perhatikan perbedaan antara generator arus searah dan generator arus bolak-balik pada gambarberikut!

1. Generator Arus Bolak-Balik

Perhatikan prinsip kerja dari suatu generator arus bolak-balik sederhana pada gambar di bawah! Ujung-ujung kumparan yang berada di dalam medan magnetik terhubung pada cincin 1 dan cincin 2 yang ikut berputar jika kumparan diputar. Cincin-cincin tersebut terhubung dengan sikat karbon A dan B. Kedua sikat karbon ini tidak ikut berputar bersama cincin dan kumparan.

Ketika kumparan berputar, terjadi arus listrik induksi pada kumparan. Arus induksi ini mengalir melalui sikat karbon sehingga lampu menyala. Saat posisi kumparan tegak lurus terhadap arah medan magnetik, arus induksi berhenti mengalir sehingga lampu padam. Beberapa saat setelah kumparan melanjutkan putarannya, arus listrik induksi kembali mengalir dalam kumparan tetapi dengan arah yang berbeda sehingga lampu kembali menyala.

Dari uraian di atas dapat disimpulkan bahwa generator arus bolak-balik menghasilkan arus bolak-balik yang dinamakan arus AC (alternating current). Grafik arus bolak-balik yang dihasilkan generator arus bolak-balik dapat dilukiskan pada gambar berikut.

2. Generator Arus Searah

Perhatikan prinsip kerja generator arus searah pada gambar berikut!

Generator arus searah hanya memiliki satu cincin yang terbelah di tengahnya yang dinamakan komutator. Salah satu belahan komutator selalu berpolaritas positif dan belahan komutator lainnya berpolaritas negatif. Hal ini menyebabkan arus listrik induksi yang mengalir hanya memiliki satu arah saja, yaitu dari komutator berpolaritas positif menuju sikat karbon, lampu, dan kembali ke komutator berpolaritas negatif. Arus listrik yang mengalir dalam satu arah saja dinamakan arus listrik searah atau direct current (DC). Grafik arus searah yang dihasilkan generator arus searah ditunjukkan pada gambar di bawah ini.

Dari uraian yang telah kamu pelajari, pada generator terdapat dua bagian. Bagian yang pertama dinamakan rotor, yaitu bagian-bagian generator yang bergerak, seperti kumparan dan cincin konduktor. Bagian yang kedua dinamakan stator, yaitu bagian-bagian generator yang tidak bergerak, seperti magnet dan sikat.

Contoh generator sederhana adalah dinamo sepeda. Dinamo sepeda mengandung kumparan kawat yang berputar di antara dua magnet. Ketika berputar, roda sepeda akan memutar kumparan di antara dua magnet tetap.

C. Transformator

Jika sebuah radio membutuhkan tegangan sebesar 9 volt, apa yang
harus dilakukan agar radio dapat menyala dengan baik jika tegangan yang disediakan PLN sebesar 220 volt? Untuk mengubah tegangan PLN sebesar 220 volt menjadi 9 volt dapat menggunakan transformator atau sering disingkat trafo.

Perhatikan transformator pada gambar berikut!

1. Prinsip Kerja Transformator

Transformator terdiri atas pasangan kumparan primer dan sekunder yang terpisah dan dililitkan pada inti besi lunak yang terbuat dari plat besi yang disusun berlapis-lapis.

Prinsip dasar transformator adalah berdasarkan percobaan yang dilakukan pertama kali oleh Faraday. Perhatikan skema rangkaian percobaan Faraday berikut ini!

Pada gambar di atas, dapat diamati bahwa rangkaian primer terdiri atas kumparan primer yang dililitkan di sebelah kiri inti besi dan dihubungkan dengan sebuah aki. Rangkaian sekunder terdiri atas kumparan sekunder yang dililitkan di sebelah kanan inti besi dan dihubungkan dengan sebuah galvanometer.

Ketika arus mengalir melalui kumparan primer, arus listrik yang mengalir pada kumparan primer berubah dari nol ke nilai tetapnya. Arus listrik tersebut menghasilkan garis-garis ini akan menghasilkan garis-garis gaya magnetik yang memotong kumparan sekunder. Karena arus listrik dalam rangkaian primer selalu berubah-ubah dari nol ke nilai tetapnya, garis-garis gaya magnetik gaya magnetik. Sesuai dengan kaidah tangan kanan, arus listrik yang memotong kumparan sekunder pun berubah-ubah dari nol ke nilai tetapnya. Perubahan garis gaya magnetik yang memotong kumparan sekunder akan membangkitkan ggl induksi pada ujung-ujung kumparan sekunder. Dengan adanya arus listrik induksi yang mengalir melalui galvanometer, jarum galvanometer akan menyimpang, misalnya ke kanan. Setelah beberapa saat, garis gaya magnetik sudah tetap sehingga ggl induksi pada ujung-ujung kumparan kembali menjadi nol.

Ketika arus yang mengalir melalui kumparan primer diputuskan, arus listrik yang mengalir pada kumparan sekunder akan berkurang dari nilai tetapnya menuju ke nol. Hal ini menyebabkan garis-garis gaya magnetik yang memotong kumparan sekunder juga berkurang dari nilai tetapnya menuju nol. Perubahan garis-garis gaya magnetik yang memotong kumparan sekunder ini menyebabkan timbulnya ggl induksi di ujung-ujung kumparan dengan polaritas yang berlawanan dengan ggl induksi yang dihasilkan sebelumnya. Hal ini menimbulkan arus induksi dengan arah yang berlawanan dengan arah arus induksi sebelumnya sehingga jarum galvanometer juga menyimpang ke arah kiri.

Transformator biasanya digunakan untuk menaikkan atau menurunkan tegangan listrik arus AC. Hal ini dapat dilakukan dengan cara membedakan jumlah lilitan dari kumparan primer dan kumparan sekunder. Bagaimana hubungan antara jumlah lilitan, kuat arus dan besar tegangan dalam transformator? Pada transformator, perbandingan tegangan sama dengan perbandingan banyaknya lilitan. Secara matematis hubungan antara tegangan dan banyaknya lilitan dituliskan sebagai berikut.

Dari Persamaan di atas dapat dikatakan bahwa besarnya tegangan berbanding lurus dengan banyaknya lilitan.

Jika besarnya tegangan dan kuat arus listrik pada kumparan primer dinyatakan dengan Vp dan Ip, maka besar daya listrik pada kumparan primer (Pp) adalah sebagai berikut.

Jika besarnya tegangan dan kuat arus listrik pada kumparan sekunder dinyatakan dengan Vs dan Is, maka besar daya listrik pada kumparan sekunder (Ps) adalah sebagai berikut.

Berdasarkan tegangan listrik yang dihasilkan, trafo dibedakan menjadi dua macam, yaitu trafo step up dan trafo step down.

Trafo step up adalah trafo yang menghasilkan tegangan arus AC lebih tinggi. Bentuk dan simbol trafo step up ditunjukkan pada Gambar 8.10. Sedangkan ciri-ciri trafo step up adalah sebagai berikut.
a. Np < Ns
b. Vp < Vs
c. Ip > Is

Trafo step down adalah trafo yang menghasilkan tegangan arus AC lebih rendah. Simbol trafo step down ditunjukkan pada Gambar 8.11. Sedangkan ciri-ciri trafo step down adalah sebagai berikut.
a. Np > Ns
b. Vp > Vs
c. Ip < Is

Pada transformator ideal, efisiensi transformator dapat dianggap 100%, hal ini berarti daya yang hilang dalam transformator dapat diabaikan sehingga daya listrik pada kumparan primer dapat diteruskan seluruhnya menuju kumparan sekunder. Dengan pengertian tersebut dapat diperoleh:

Sehingga hubungan antara besarnya tegangan dan besarnya arus listrik dapat dituliskan sebagai berikut.

sehingga hubungan antara arus listrik dengan banyaknya lilitan dapat diperoleh sebagai berikut.

Pada transformator energi listrik yang keluar selalu lebih kecil daripada energi listrik yang masuk. Hukum kekekalan energi menyatakan bahwa energi tidak dapat diciptakan dan tidak dapat dimusnahkan, tetapi energi hanya dapat diubah dari satu bentuk energi ke bentuk energi lainnya. Nah, hukum kekekalan energi ini juga berlaku pada transformator.

Ketika kita memegang bagian besi yang terisolasi setelah transformator digunakan, kita akan merasakan panas. Hal ini membuktikan bahwa sebagian energi pada transformator diubah menjadi energi panas sehingga energi listrik yang keluar dari transformator selalu lebih kecil daripada energi yang masuk ke transformator. Timbulnya energi panas pada transformator tidak dapat dihindari.

Perbandingan antara daya listrik yang keluar dari transformator dan daya listrik yang masuk ke transformator disebut efisiensi transformator. Nilai efisiensi transformator dinyatakan dalam persentase. Efisiensi transformator dapat dinyatakan sebagai berikut.

Karena daya listrik sama dengan hasil kali tegangan dan kuat arus listrik, efisiensi transformator dapat juga dinyatakan sebagai berikut.

2. Penggunaan Transformator

Transformator step down atau transformator yang tegangan sekundernya lebih kecil daripada tegangan primernya sering digunakan dalam alat-alat elektronik, seperti radio, televisi, CD player, tape, dan lain-lain. Alat-alat ini membutuhkan tegangan listrik cukup rendah, yaitu antara 3 V – 20 V arus searah (DC). Jika kamu perhatikan, alat-alat listrik tersebut sering dihubungkan langsung dengan listrik PLN yang mempunyai tegangan 220 V arus bolak-balik (AC). Mengapa peralatan tersebut tidak rusak/terbakar? Di dalam peralatan elektronik tersebut terdapat transformator step down yang berfungsi untuk menurunkan tegangan listrik. Selain transformator, juga terdapat unit penyearah tegangan, sehingga arus bolak-balik (AC) pada listrik PLN dapat berubah menjadi arus searah (DC) yang diperlukan peralatan elektronik tersebut.

Transformator step up atau transformator yang tegangan sekundernya lebih besar daripada tegangan primernya banyak digunakan dalam pesawat televisi atau monitor komputer untuk menghasilkan tegangan yang sangat tinggi. Tegangan ekstra tinggi ini diperlukan untuk mengaktifkan tabung sinar katoda (CRT). Jika CRT diberi tegangan ekstra tinggi, akan terpancar elektron. Pancaran elektron yang terus menerus dengan intensitas yang berubah-ubah akan diterima pada layar pesawat televisi sebagai gambar bergerak.

Transformator step up juga digunakan pada lampu TL (lampu neon) untuk menaikkan tegangan listrik. Tegangan tinggi ini dihubungkan ke elektroda lampu TL diberi tenganan tinggi, akan terpancar elektron. Pancaran elektron akan menumbuk gas yang ada dalam tabung sehingga menghasilkan sinar ultraviolet. Sinar ini akan memancar ke segala arah dan menumbuk lapisan fosfor pada dinding kaca tabung, sehingga menghasilkan sinar putih yang terang.

Pada kendaraan bermotor, transformator step up digunakan dalam koil untuk menaikkan tegangan listrik. Tegangan listrik ekstra tinggi ini disalurkan ke busi sehingga menghasilkan loncatan bunga api di dalam ruang bakar. Loncatan bunga api akan membakar bahan bakar yang telah dicampur dengan udara, sehingga timbul ledakan yang mendorong piston untuk bergerak. Gerakan piston kemudian diubah menjadi gerak
berputar untuk menjalankan kendaraan bermotor.

Selain digunakan dalam alat elektronika, transformator juga sering digunakan dalam penyaluran listrik dari pusat pembangkit sampai ke rumah-rumah atau sering disebut transmisi daya listrik jarak jauh. Perhatikan gambar berikut!

Pembangkit listrik umumnya terletak jauh dari perkotaan dan pemukiman. Di pusat pembangkit tenaga listrik, dihasilkan listrik dengan arus yang besar namun tegangannya tidak terlalu tinggi (sekitar 3.000 volt). Untuk keperluan transmisi listrik jarak jauh, tegangan listrik dinaikkan menggunakan trafo step-up menjadi 150.000 volt.

Mengapa penyaluran listrik jarak jauh harus meng-gunakan tegangan tinggi?

Di negara kita, PLN menyalurkan daya listrik dari pusat pembangkit hingga ke rumah-rumah dengan menggunakan kabel-kabel yang dibentangkan di udara. Panjang kabel ini dapat mencapai ratusan kilometer. Hal ini dapat menimbulkan hambatan yang sangat besar sehingga energi listrik banyak yang hilang. Perhatikan gambar berikut!

Untuk mengurangi hilangnya energi listrik, harus diusahakan agar arus listrik yang mengalir melalui kabel listrik sekecil mungkin. Untuk menghasilkan arus listrik yang kecil, pembangkit listrik harus menghasilkan tegangan yang besar. Hal ini sesuai dengan persamaan:

Daya yang hilang di perjalanan (transmisi) dapat dihitung dengan rumus:

Dari Persamaan (8.9), kamu dapat mengamati bahwa untuk mempertahankan daya listrik dan memperkecil arus listrik, maka tegangan listrik harus dinaikkan (karena nilai V berbanding terbalik dengan nilai I). Berdasarkan uraian tersebut, maka PLN menyalurkan listrik setelah tegangannya dinaikkan menggunakan transformator step up agar arus listrik yang dialirkan kecil sehingga mengurangi energi yang hilang. Transformator ini menaikkan tegangan yang dihasilkan oleh  generator besar di pusat pembangkit menjadi sekitar 150. 000 volt. Selain itu dapat memperkecil energi listrik yang hilang dalam perjalanan, arus listrik yang rendah dapat ditransmisikan melalui kawat yang kecil sehingga biaya pengadaan sarana transmisi listrik menjadi lebih murah. Listrik tegangan tinggi ini kemudian disalurkan menuju kota-kota yang letaknya jauh dari pusat pembangkit.

Sebelum masuk kota, tegangan listrik diturunkan kembali dengan menggunakan trafo step-down di gardu induk menjadi sebesar 20.000 volt. Sebelum disalurkan ke industri atau rumah tangga pelanggan, tegangan listrik kembali diturunkan dengan trafo step-down di gardu listrik menjadi sebesar 220 volt. Untuk keperluan menurunkan tegangan listrik ini diperlukan transformator step down.

3 comments on “Induksi Elektromagnetik

Tinggalkan Balasan ke Alfian Batalkan balasan